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Abstract—Creating controllers for NPCs in video games is
traditionally a challenging and time consuming task. While
automated learning methods such as neuroevolution (i.e. evolving
artificial neural networks) have shown promise in this context,
they often still require carefully designed fitness functions. In this
paper, we show how casual users can create controllers for Super
Mario Bros. through an interactive evolutionary computation (IEC)
approach, without prior domain or programming knowledge.
By iteratively selecting Super Mario behaviors from a set of
candidates, users are able to guide evolution towards behaviors
they prefer. The result of a user test show that the participants
are able to evolve controllers with very diverse behaviors, which
would be difficult through automated approaches. Additionally,
the user-evolved controllers perform as well as controllers evolved
with a traditional fitness-based approach in terms of distance
traveled. The results suggest that IEC is a viable alternative
in designing diverse controllers for video games that could be
extended to other games in the future.

I. INTRODUCTION

In recent years it has become more and more popular
for video games to enable users to create and share game
content. The examples are many and include Sony’s puzzle
game Little Big Planet1, Nadeos racing game TrackMania that
allows users to build race tracks2 and the recent Super Mario
Maker, in which users can build their own Mario levels3. The
user-created content most often comes in the form of levels;
very few games let the user create or modify the behavior
or underlying structure of the Non-Player-Characters (NPCs).
Usually, the NPC behaviors are constructed by programmers
and function in predetermined and static ways.

In this paper we show that casual users are able to create
sophisticated behaviors for the Super Mario Bros. video game
by using a simple interface to evaluate several candidate
behaviors that is reiterated upon. The approach is based on
interactive evolutionary computation (IEC) [19] and requires
no prior knowledge of neither AI methods nor programming.
The developed IEC framework presents users with a selection
of GIFs that show short level playthroughs, from which they
can then choose the parents of the next generation. Human-
in-the-loop approaches, such as IEC, have shown promise in

1http://littlebigplanet.playstation.com
2http://en.wikipedia.org/wiki/TrackMania
3http://en.wikipedia.org/wiki/Super Mario Maker

a variety of different domains [9, 19, 21], because they allow
human intuition to guide the search process.

The IEC results in this paper are compared to an automated
fitness-based search. Interestingly, users were able to not
only interactively evolve a variety of interesting and unique
behaviors but also behaviors that perform competitively in
comparison to the automated search. Additionally, and poten-
tially more important, users reported that they (1) had fun
while evolving Mario behaviors, and (2) felt that they had an
impact on evolution. These results indicate that IEC could be
a viable and entertaining approach to empowering players to
create their own NPC behaviors.

This paper is organized as follows. Section II reviews the
evolutionary computation methods this project builds upon,
followed by a brief description of the Super Mario domain
and game mechanics in Section III. In Section IV the domain
representation, methods and core algorithms are described in
detail. In Section V we give a description of our experiments,
followed by the results in Section VI. Section VII highlights
several pitfalls of the current approach and discusses future
work that could improve it.

II. BACKGROUND

This section gives a brief introduction to neuroevolution
(NE) in general and the NeuroEvolution of Augmenting
Topologies algorithm (NEAT), which evolves the Mario con-
trollers in this paper. Lastly, we review several examples in
which NE has been combined with IEC.

A. The Mario Framework

The Mario framework has been used extensively for various
AI related research projects and gameplay competitions4.
Projects range from imitating player behavior [10], evolving
behavior trees through grammatical evolution [12], or creating
content based on player experience [11], to Mario controllers
optimized through reinforcement learning [20].

B. Neuroevolution

Neuroevolution (NE), the artificial evolution of artificial
neural networks (ANNs), takes inspiration from the process
that created our biological nervous system and has shown

4For more info see: http://www.marioai.org/gameplay-track



promise in a variety of different domains [3], and video games
[13]. Typically, a population of neural networks controlling
an agent is tested in a given environment, in which those
individuals with higher scores – based on some defined fitness
criteria – will have a higher chance of being recombined and/or
mutated to produce the next generation of solution candidates.

In this paper, the neural networks controlling Mario are
evolved with the NEAT algorithm [17]. NEAT begins with
a population of simple neural networks and then adds com-
plexity over generations by adding new nodes and connections
through mutations. By evolving networks in this way, the
topology of the network does not need to be known a priori;
NEAT searches through increasingly complex networks to find
a suitable level of complexity. For a complete overview of
NEAT see Stanley and Miikkulainen [17]. Most importantly,
such complexification, which resembles how genes are added
over the course of natural evolution, allows NEAT to establish
high-level features early in evolution and then later elaborate
on them.

C. Interactive Evolutionary Computation

In interactive evolutionary computation (IEC), users make
aesthetic decisions by rating individual candidates, thereby
deciding which individuals breed and which ones die instead
of relying on fitness functions designed by developers [19].
Several examples of combining NE and IEC exist, such as
users evolving 2D pictures in Picbreeder [16], 3D models
through EndlessForms [2] or sound timbres [6].

The combination of IEC and NE has also allowed the
creation of new types of games [13]. In the Galactic Arms
Race video game [4], weapons are evolving based on how
frequently they are shot by the players, and in the social game
Petalz [14, 15], players can breed their own unique flowers.
Other examples include the NERO game, in which players
breed an army of robots in order to fight a team evolved by
other players [18]. Each robot in NERO is controlled by a
neural network evolved by the NEAT algorithm. By designing
different training exercises players can train their robots to
behave in specific ways when encountering various challenges
on the battlefield.

Recently, a video from Seth Bling showing the evolution of
a neural network for Super Mario World, has gathered over
two million YouTube hits5. The popularity of this work shows
the potential of using video games to reach a broader audience.
However, so far, none of the aforementioned approaches allow
players to design NPCs in a totally user-driven process, which
the approach in this paper will try to attempt.

III. SUPER MARIO GAME MECHANICS

This section describes the game environment and the pos-
sible actions the Mario controlling ANN can perform. Super
Mario is a world-famous game franchise, containing several
games both in 2D and 3D. The game used in this paper is a
modified version of the Infinite Super Mario Bros., originally

5https://www.youtube.com/watch?v=qv6UVOQ0F44

created by Markus Persson and modified by Julian Togelius
and Sergey Karakovskiy for the Mario AI competition6. The
Mario framework features many of the same enemies and types
of levels as the original games, though the specific terrains are
randomly generated.

A. Level Terrain

In each level the avatar Mario has to overcome different
challenges with the goal to ultimately reach his princess at the
end of the game. To successfully navigate the levels, Mario
needs to be able to notice changes in the terrain such as holes
that he could fall into or obstacles. Several types of blocks,
which can be interacted with, are scattered throughout the
level, some of which will yield either coins or power-ups.
Likewise, coins are dispersed and can be collected.

B. Enemy Types

Mario is also facing a multitude of enemies. Most of them
are either walking on the ground, jumping around or flying
in the air. The majority can be killed by jumping on them,
but some have spikes on their backs that prevents this kind of
attack. All of them can be shot by fireballs as well. More
uncommon are missiles shot from canons and flowers that
continuously appear from and disappear into green tubes. The
former can be destroyed by jumping on them, while the latter
can only be shot by a fireball.

C. Mario States

The character of Mario can exist in three different states:
small, big and big with fire-shooting ability. Every time Mario
is hurt by an enemy he regresses to a lower state, and dies if he
is hurt in the small state. The previously mentioned power-ups
can advance his state to a higher level.

D. Actions

In the original game, players can control Mario through the
Nintendo controller, with buttons right, left, down, up, A and
B. Mario is able to move left or right, at a normal or fast
speed, crouch, jump in the air and, if he is in the right state,
shoot fireballs. In the Infinite Super Mario Bros. version the
AI controlled Mario’s have access to the same controls.

IV. METHODS AND REPRESENTATION

This section details the implemented algorithms, neural
network setup and IEC interface.

A. Neural Network Setup

The ANN controlling Mario in this paper, receives a 3 ×3
grid of cells centered around Mario as input, in which different
cell values represent different terrain types (Figure 1). In detail,
the specific values are as follows: 1.0 = ground, 0.2 = coin,
0.0 = unreachable ground or air, −0.2 = question mark box,
−0.5 = breakable standard box, −0.75 = green tube, and
finally −1.0 for a hill piece.

6http://www.marioai.org



Figure 1. Mario Representation. The controlling ANN receives a 3 ×
3 grid as input together with information about the distance and angles to
enemies, and conditional domain variables canJump and onGround. The
ANN outputs (shown at the top-right corner) determine the action that Mario
performs each tick.

Additionally, the ANN receives the distance and angle to
the two nearest enemies relative to Mario; the enemy type
is currently not provided to the network. The values for
both angle and distance are normalized in the range [−1, 1].
The domain conditional inputs canJump and onGround are
represented as either −1.0 (false) or 1.0 (true).

The ANN has six outputs: right, left, up, down, jump, and
fire. If the output value for an action is higher than a threshold
of 0.5, the particular button is pressed. Mario can perform
multiple actions at the same time (e.g. shooting and jumping),
except to run left and right. In case both left and right are
chosen by the ANN, the one with the highest activation is
performed; if both have the same value Mario will not move.

As the Mario framework implementation is written in JAVA,
the framework in this paper is build on the NEAT and
Java Genetic Algorithms Package (JGAP)7 based framework
Another NEAT Java Implementation (ANJI)8.

B. The IEC Interface

The motivation for the IEC approach in this paper is the
potential to enable casual users to create Mario controller
without any technical skills. Figure 2 shows the developed IEC
interface, which aims to accomplish this goal. While the user
is watching, a total of nine controllers are playing – one after
the other – through a small part of a Mario level. The number
of presented controllers tries to strike a balance between giving
the user enough variety to choose from while still allowing a
reasonable quick evaluation of all behaviors shown.

During the playthroughs, GIFs are recorded for each of
the different controllers that show Mario in action. Once the
whole population has been played and recorded, a window

7http://jgap.sourceforge.net
8http://anji.sourceforge.net/

Table I
EVOLUTIONARY APPROACHES.

Approach Evaluation
Fitness-based Controller Fitness function awarding

cells passed
IEC Free Play Controller User without any specific

goal
IEC Competition Controller User with the goal to pass

as many cells as possible

with all nine recorded GIFs is shown to the user (Figure 2).
The user is then able to evaluate and compare each individual
in the population and select one preferred controller by simply
clicking on the particular GIF. Based on the user’s selection,
the next generation of controllers is created through mutating
the selected individual and the process starts again. That
way users can guide the evolutionary search towards Mario
behaviors they find interesting.

V. EXPERIMENTS

To test whether users can evolve Mario behaviors, a user
study was performed on site at the IT University of Copen-
hagen with a total of 20 participants. Each participant was
asked to evolve controllers for 20 generations through the
interface presented in Section IV. Additionally, we divided
the participants in groups of ten and gave them different in-
structions in order to determine under what conditions certain
behaviors evolve. The first ten participants were given no
constraints as what to create, and were encouraged to evolve
whichever behaviors they preferred. The other ten were told
to evolve controllers that could travel as far as possible in the
level. The second user study was set-up as a contest with a
small prize for the best performing controller, to give some
additional incentive for the players to do their best.

After the users evolved Mario controller for 20 generations,
they were asked to answer two questions on a scale from 1–6
(where 6 is best). The questions read as follows:

1) How much impact do you feel that your choices had on
the evolutionary process?

2) How much fun was it to develop your AI this way?
Controllers evolved through IEC were compared to con-

trollers evolved with a traditional automated fitness-based
approach. The fitness for the automated approach was the
number of cells passed at the end of the simulation. The
simulation was terminated if Mario reached the end of the
level, he died or the time limit was reached. Additionally,
to create more robust controllers, the starting position of the
avatar was moved every four generations to a different location
in the same level, for both the automated and IEC approach
(Figure 3). Table I shows an overview of the three approaches.

A. Experimental Setup and Parameters

The duration of GIFs shown to the users is initially set to
2,1 seconds, but increases gradually each generation, with a
maximum of 4 seconds in the final generation. As it is often



Figure 2. The IEC User Interface. The user is presented with nine small playthroughs recorded as GIFs, from which the parent for the next generation can
be chosen. The IEC approach offers casual users the ability to breed Mario controllers without requiring technical skills.

easier to eliminate inferior behaviors at earlier generations, the
duration was limited in the beginning to reduce user fatigue.

The population size was set to nine for both the automated
and IEC approach. The number of generations was set to 20.
Offspring had a weight mutation chance of 0.55, 0.01 chance
of node addition, and 0.01 chance of link addition.

VI. RESULTS

The IEC results are based on the ten participants of each
experiment and the fitness-based results are collected from ten
independent evolutionary runs. Figure 4 depicts a general trend
for all approaches to improve over generations. In particular,
there is a significant increase in performance for all methods
comparing first and last generations (p < 0.05; Student’s t-
test). The pair-wise differences between the approaches are on
the other hand not significantly different, which indicates that
both automated and IEC approaches (free play and competi-
tive) are able to evolve similar performing Mario controllers.

Not surprisingly, for all three approaches there are drops
in performance when Mario’s starting position is moved in
generations 5, 9, 13 and 17. Not only does the level layout
change at a new starting position, which might break less
general controllers, later parts of the level often contain new
object types (e.g. a question mark box) that the ANN controller
first has to learn to respond to.

Additionally, the results show that the standard deviation for
cells passed for the user-evolved controllers is often higher
than for the automated approach. This difference indicates
that a fitness-based approach tends to create more uniform
controllers, while there is more variety in the type of behaviors
evolved through IEC, which we examine next.

A. IEC Evolved Behavior Examples

Indeed, the participants in the user tests were able to evolve
controllers displaying a variety of different behaviors. While
most users would first focus on creating controllers capable
of jumping and moving to the right (a strategy often also



Figure 3. Training Starting Positions. To encourage the evolution of general behaviors, the starting position of Mario is moved every four generations to
the next pre-defined position in the same level.

Figure 4. Training Performance. Shown are average cells passed during
training over generations. The vertical red lines indicate the generations when
Mario is set to a new position in the level.

discovered by the automated fitness-based search), some tried
to evolve more specific and unique behavior.

Examples include behaviors that would try to collect as
many coins as possible or rush through the level without pay-
ing attention to enemies or coins. Other controllers would act
more cautiously, standing still and ducking when encountering
enemies, and would only move once the enemies were behind
Mario to his left.

Figure 5 shows a unique IEC created Mario behavior
called living-on-the-edge. Mario would first try to run into
enemies when in his normal state, and then try to keep a
specific distance to the enemy in the small Mario state (see
Section III-C for details on the different Mario states).

More aggressive Mario controllers such as im-gonna-kill-
everything-that-moves-mario, which tries to jump on every en-
countered enemy while shooting fireballs in all directions, was
also evolved in the IEC free play session. Other participants
would try to evolve slightly more pacifistic Mario behaviors
that used enemies as pads to jump higher, progressing more
easily through difficult obstacles in the level (e.g. a high
cliff). The reader is encouraged to take a look at the video
accompanying this paper (available at https://goo.gl/Ell82m),
to get a better sense of the types of controllers that were
evolved and the IEC system in action.

Table II
QUESTIONNAIRE RESULTS.

Questions Average Rating Standard Devia-
tion

Q1: Impact on evolution 4.29 0.8
Q2: Amount of fun when
evolving

4.88 1.0

B. Questionnaire Results

The results from the questionnaire are shown in Table II. In
general, the participants felt that they had significant impact on
evolution with an average rating of 4.29 out of 6. However,
there were no participants who felt that they had complete
control, which could be due to the fact that (1) Mario’s starting
position was moved every fourth generation leading to drops
in performance and unexpected behaviors, or that (2) IEC is
simply a stochastic process.

Maybe slightly surprising, over 25% gave the maximum
score when asked about the level of fun they had breeding
Mario controllers, with a score of 4.88 on average. The user
responses indicate that IEC-based interfaces have potential for
other video games as well, which can benefit from casual users
evaluating and evolving NPC behaviors. Similarly to games
like NERO [18] and EvoCommander [5], the results in this
paper suggest that the process of evolving NPC behaviors can
be a novel and entertaining game mechanic.

C. Generalization Test

NPC controllers employed in video games should be able
to deal with variations in their environment and ideally gen-
eralize to situations they might not have encountered during
training. To test the generality of the evolved behaviors in
this paper, the selected IEC and fitness-based controllers from
each generation are tested in ten variations of the level they
were trained in. In each variation the level layout, amount and
location of enemies, enemy types, tubes, coins and breakable
boxes is changed randomly.

Figure 6 shows the generalization performance of the three
approaches. IEC free play reaches the highest generalization
performance, however, the pair-wise differences between the



(a) (b) (c)
Figure 5. Storyboard of the “living-on-the-edge” Mario controller. The controller runs into an enemy (a) and then after converting to the smallest Mario
state (b), walks as close to the enemies as possible without touching it (c).

Figure 6. Generalization Performance. The controllers selected during
training in each generation are tested on their ability to perform in levels they
have not seen during training. Each controller is evaluated on ten different
level layouts.

approaches are not significant. Similarly to the training perfor-
mance, all approaches have a statistically higher generalization
performance when comparing the first to the last generation
(p < 0.05). The performance of the controllers on the
generalization test is mostly comparable to the performance
in training, indicating that the evolved behaviors are able to
deal with some variation in the layout of levels.

Overall the results suggest that casual users are able to
evolve a variety of unique behaviors that often also perform on
par to controllers evolved with a fitness-based approach. It is
important to note that the main goal of this comparison is not
to determine which method produces the highest performing
controllers, but rather to establish a base-line that the IEC-
based approaches can be compared to. Inevitably, some will ar-
gue that by giving the fitness-based approach more generations
it would eventually outperform the IEC approach. While this
is likely true, the main advantage of the IEC approach is that
even in a game like Mario (i.e. a game whose main goal it is to
just advance to the right), players can guide evolution towards
unique and interesting behaviors that would not have been
rewarded by a naive fitness-based approach (see Section VI-A
for examples).

VII. DISCUSSION AND FUTURE WORK

This section discusses the strengths and weaknesses of the
presented approach to create Mario controllers. We also try to
articulate suggestions for improvements and draw perspectives
to other projects and methods.

A. Representation

There exist a variety of different ways to represent the Mario
world to an ANN-based controller, which differ in terms of
the number of ANN inputs and level of sensory abstraction.
The representation chosen in this paper tries to strike a balance
between selecting the inputs that the controller needs in order
to perceive its world, and keeping their number as small as
possible; each additional input can lead to an increase in
the evolutionary search space and greater demands on the
information processing capabilities of the network.

The number of inputs for each object type (e.g. terrain grid
size, number enemies) can also have a significant influence
on the behavior of the agent. Representing too many enemies
and having too small a grid, means the network will initially
be highly sensitive to nearby enemies and less sensitive to the
terrain. While the ANN can be trained to compensate for this
or its inputs can be scaled, it will require additional training
time or domain-dependent manual tweaking.

B. User Fatigue

As IEC can be a time consuming process, user fatigue
can be an issue. To produce a desired and usable result the
process of iteratively selecting behaviors can take many hours.
In the current system it takes approximately 60 seconds per
generation, both to record the GIFs and to choose among them.
The current implementation is not optimal as users have to
wait for the recording of each GIF, and even though they can
watch the controllers perform during this process, it increases
the evaluation time significantly.

Initially, we experimented with combining IEC with an
automated fitness-based search in between each IEC step
to speed up the evolutionary process. The automated search
would run for a few generations, rewarding Mario for moving
towards the right. However, this addition sometimes introduced



an unwanted bias, leading evolution away from the direction
sought by the user (e.g. a Mario controller that moves left).

User fatigue can also be negatively influenced if the con-
trollers presented to the user are all very similar; unvaried
controllers might not be very meaningful for the user to
choose between. As proposed by Woolley and Stanley [21],
a potential solution to this problem could be novelty-assisted
interactive evolution (NA-IEC). By combining IEC with nov-
elty search [7], a divergent evolutionary search method, the
users would only choose from candidate solutions of novel
behaviors, thereby accelerating the evolutionary search. Addi-
tionally, to gain insights into the quality of user-evolved versus
automation-evolved behaviors, the IEC approach should be
compared to a novelty search based approach. Another future
extension to accelerate the IEC approach could be a rank-
based IEC approach that was introduced by Liapis et al. [8]
for content generation. The rank-based approach has shown
advantages over the standard IEC approach with respect to
speed of convergence.

C. User Evaluation

A potential pitfall to the human evaluation step is the relative
short duration of the GIF; the user only gets a small glimpse
of Mario’s behavior. Currently, the duration of the GIF is a
compromise between how long the user should have to wait for
the recording and how much gameplay the user needs to see
in order to evaluate the controller properly. A solution could
be to automatically learn a model of the user [1] and only
show a few longer playthroughs to the user that the learned
user model is uncertain about.

In the initial generations the ANNs often perform seemingly
random behaviors. Instead of starting from random controllers,
users could instead build upon the work of others, similar to
how users collaborate in Picbreeder [16].

VIII. CONCLUSION

The presented approach allows users, for the first time, to
interactively evolve behaviors for Super Mario. The results
show that controllers evolved with IEC perform similarly
well compared to a fitness-based search in terms of distance
traveled, but importantly display more varied strategies and
behaviors. Moreover, the IEC users reported that they had fun
while evaluating and evolving controllers. In the future, this
system could be extended to other video games and to allow
many users to evolve behaviors collaboratively online.
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